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Abstract
A number of circular regression models have been proposed in the literature. In recent

years, there is a strong interest shown on the subject of outlier detection in circular regres-

sion. An outlier detection procedure can be developed by defining a new statistic in terms of

the circular residuals. In this paper, we propose a new measure which transforms the circu-

lar residuals into linear measures using a trigonometric function. We then employ the row

deletion approach to identify observations that affect the measure the most, a candidate of

outlier. The corresponding cut-off points and the performance of the detection procedure

when applied on Down and Mardia’s model are studied via simulations. For illustration, we

apply the procedure on circadian data.

Introduction
The occurrence of outliers in a data set has been widely discussed in the literature. Their occur-
rence may be due to error, or part of the phenomena under study. Either way, it is important to
identify outliers so that further investigation can be conducted. In linear regression, extensive
study on the problem of outliers and leverage points can be found in the literature (e.g. [1, 2,
3]). Many statistical software packages provide different tools to identify outliers in linear
regression models. However, such studies are rarely found for circular regression models
where the dependent and independent variables are of circular form.

Circular variables are commonly found in many scientific fields such as meteorology. The
variable takes the values in the range [0,2π) radian. The existence of outliers in circular data
may affect the estimation of the parameters and weaken the accuracy of forecasting. Thus, it is
of interest to develop suitable methods of identifying outliers in circular problem. We focus on
developing such method for circular regression model.

The regression of a circular dependent variable on a set of linear variables was first discussed
by Gould [4]. The model follows closely the linear regression form and an iterative method was
used to estimate the parameters by maximizing the likelihood function, with further improve-
ment made by Fisher and Lee [5] and Johnson and Wehrly [6]. On the other hand, the first
attempt to fit a circular regression models of two circular variables u and v was made by
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Laycock [7] using the complex linear regression, where the model can be expressed as a con-
ventional linear model with complex entries. Rivest [8] proposed another regression model
with specific application in predicting the direction of earthquake displacement. On the other
hand, Jammalamadaka and Sarma [9] expressed a circular-circular model in terms of Fourier
series expansions while Hussin et. al [10] assumed the two circular variables are related in lin-
ear form. In this paper, we consider the circular regression model proposed by Downs and
Mardia [11], and would refer the model as "DM circular regression model" for the rest of the
paper.

Although the first discussion of circular regression goes back to Gould [4], there are few
known published work found on the identification of outliers in circular regression. Abuzaid
et al. [12] and Ibrahim et al. [13] explored the problem on two types of circular regression
models by observing the effect of removing one observation on the covariance matrix. Further,
Abuzaid et al. [14] proposed a residual measure using a cosine function to detect outliers in a
linear circular regression model, where the relationship between the dependent and indepen-
dent variables is strictly linear (see [10]). In this paper, we propose a new summary measure
for the purpose of detecting outliers in terms of a simple measure of circular distance in DM
circular regression model. Due to the compact close range of circular variables, it is expected
that the effect of masking problem is minimal.

With that view in mind, this paper is organized as follows: Firstly, we review the theory of
DM circular regression models. Secondly, the proposed statistic to be used in identifying influ-
ential observations in DM circular regression models is presented. Thirdly, we conduct simula-
tion studies to investigate the sampling behavior of the statistic and the performance of the
procedure of detecting influential observation. Finally, we then apply the procedure on the cir-
cadian data as given in Down and Mardia [11].

Table 1. Simulated cut-off points of theDMCEs statistic (α = 1.5, β = 1.5,ω = 0.5).

n Level of percentiles κ = 5 κ = 10 κ = 20

10 10% 0.0855 0.0697 0.0589

5% 0.0940 0.0818 0.0716

1% 0.1000 0.0985 0.0964

20 10% 0.0400 0.0298 0.0170

5% 0.0457 0.0376 0.0283

1% 0.0500 0.0479 0.0428

30 10% 0.0245 0.0162 0.0109

5% 0.0281 0.0195 0.0118

1% 0.0330 0.0295 0.0212

50 10% 0.0142 0.0098 0.0068

5% 0.0154 0.0105 0.0073

1% 0.0193 0.0131 0.0084

70 10% 0.0102 0.0072 0.0050

5% 0.0113 0.0076 0.0054

1% 0.0136 0.0089 0.0060

100 10% 0.0074 0.0051 0.0036

5% 0.0079 0.0055 0.0038

1% 0.0090 0.0059 0.0043

150 10% 0.0051 0.0036 0.0025

5% 0.0054 0.0038 0.0027

1% 0.0062 0.0042 0.0029

doi:10.1371/journal.pone.0153074.t001
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DMCircular Regression Model
Assume that (u,v) are a pair of independent and dependent random angles with angular loca-
tion parameters α and β respectively, and ω is a slope parameter in the closed interval [–1, 1].
Down and Mardia [11] proposed the DM circular regression model given by

tan
1

2
v � bð Þ ¼ o tan

1

2
u� að Þ: ð1Þ

The model ensures a one-to-one relationship between u and v, ω 6¼ 0. The relationship can
be described by a continuous closed curve winding around a toroidal surface. The model has a
unique solution given by

v ¼ bþ 2 tan�1 o tan
1

2
u� að Þ

� �
: ð2Þ

Suppose that v in Eq (2) is replaced by μ, the mean direction for v givenu. The resulting DM
circular regression model is given by

tan
1

2
ðm� bÞ ¼ o tan

1

2
ðu� aÞ ð3Þ

which has a unique solution

m ¼ bþ 2tan�1 o tan
1

2
u� að Þ

� �
: ð4Þ

As can be seen, the model has three functionally independent parametersα, β and ω. It can
be shown that the log-likelihood function for a random sample of n pairs (uj, vj), j = 1, 2,. . .,n,
is

lða; b;o; v1; . . . ; vnÞ ¼ �n logI0ðkÞ
þ k

X
j
cosðvj � b� vðuj � a;oÞÞ þ constant

ð5Þ

where κ is the concentration parameter, I0ðkÞ ¼
X1

j¼0
ððk=2Þj=j !Þ2 is the modified Bessel

function of the first kind order zero and vðuj � a;oÞ ¼ 2tan�1 o tan 1
2
ðuj � aÞ

n o
. We may

define explicitly the maximum likelihood estimator r̂ of the precision parameter ρ by

r̂ a; b;oð Þ ¼ 1

n

X
j
cosðvj � b� vðuj � a;oÞÞ: ð6Þ

Hence, the log-likelihood functions of Eq (5) and maximum likelihood estimator r̂ of Eq
(6) are changed accordingly.

We employ an iterative method of obtaining the estimates of (α, β, ω), say ðâ; b̂; ôÞ, which
maximize Eq (5). This can be done by using the MS function available in S-Plus software. The
function requires the determination of initial values α0, β0 and ω0. These initial values can be
taken to values which give maximum precision parameter r̂ in Eq (6) for all possible pairs
(α, β, ω) in pre-specified sets. In our case, the following sets of parameter values are considered;
α = [−π, π], β = [−π, π] and ω = [−1, 1]. Then using those initial values, we obtain the estimates
iteratively for the three parameters of the model.
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Definition of a New Statistic
Upon fitting the bivariate circular variables (uj, vj), j = 1, 2,. . .,n, we obtain the fitted values of
vj, say v̂ j. It is then useful to utilize the fitted values in evaluating the goodness-of-fit of the DM

circular regression model in terms of circular errors. One useful measure is the circular distance
between two circular observations, say ϕ and θ, as given by Jammalamadaka and SenGupta
[15]. It is defined by as d�(ϕ, θ) = π−|π−|ϕ−θ||, d�2[0, π]. Down and Mardia [11] in Section 2.3
had shown that the angular error where in our case, the difference between vj and v̂ j is then

given by dj ¼ p� jp� jvj � v̂ jjj which can also be treated as a circular error of the model fol-

low a von Mises distribution denoted as VM with mean direction μ = 0 and concentration para-
meterκ. In measuring the overall goodness-of-fit of the model, we may define a summary
measure of errors called mean circular error (MCEs) as

MCEs ¼ 1

n

Xn

j¼1

sin
dj

2

� �
ð7Þ

where n is the sample size andMCEs2[0, 1].
We intend to use a row deletion method to investigate the effect of removing an observation

from the data set on the values ofMCEs. The effect can be measured by looking at the maxi-
mum absolute difference between the value of the statistics for full and reduced data sets,
denoted by DMCEs, such that

DMCEs ¼ max
j
f jMCEs�MCEsð�jÞj g ð8Þ

whereMCEs andMCEs(-j) are the values of Eq (7) for the full data set and when the jth observa-
tion is removed from the data, respectively. Any observation will be identified as an outlier if
the corresponding value of DMCEs exceeds a pre-specified cut-off point.

Sampling Behavior of the DMCEs Statistic
We perform a simulation study to investigate the sampling behavior of the DMCEs statistic. A
set of circular random errors of sizes n = 10, 20, 30, 50, 70, 100 and 150 are generated from a
VM with mean direction μ = 0 and various values of concentration parameter κ = 5, 10, and 20.
We also generate the values of the independent circular random u from VM(π/2, 3) of size n.
Observed values of the response variable v are then calculated based on the DM circular regres-
sion model with fixed values of α = 1.5, β = 1.5, and ω = 0.5. Upon fitting the simulated data,
we obtain the fitted values v̂ of the DM circular regression model. Then, we compute the values
ofMCEs andMCEs(-j) for j = 1, 2,. . ., n. Hence, the values of the DMCEs statistic for every
observation are obtained. For each case, the process is carried out 2000 times and the 1%, 5%
and 10% upper percentiles of the statistic are calculated as tabulated in Table 1.

In general, for these particular choices of parameter values, the value of cut-off point
decreases as the concentration parameter κ increases for all n and percentile levels. Similarly,
as the sample size increases, the cut-off points decrease for all percentile levels and concentra-
tion parameters. The cut-off points may differ for different combinations of parameter values
and are available upon request from the authors. Alternatively, the relevant program to obtain
the cut-off points can be found at http://cran.r-project.org/.

Power of Performance of the DMCEs Statistic
It is of interest to investigate the performance of the DMCEs statistic via simulation study. A
similar scheme used in Section 4 is employed here. We introduce an outlier in the simulated
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data at point d of the response variable v, vd, such that

v�d ¼ vd þ lpmodð2pÞ

where v�d is the contaminated observation at position d and λ is the degree of contamination,
0� λ� 1.

When λ = 0, there is no contamination at position d, whereas when λ = 1, the observation v�d
is located at the anti mode of its initial location. The generated data are fitted using Eq (2) and
consequently we obtain the fitted values v̂ . Then, we calculate the value of DMCEs for each sim-
ulated data set. The statistic has good power of performances if the fraction of correctly detect-
ing outlier at position d is close to 1.

Fig 1 shows the performance of DMCEs for n = 70 and various values of κ. When larger val-
ues are used, the performance is almost similar, but clearly better than that for small κ. On the
other hand, Fig 2 gives the plot of the power of performance of the DMCEs statistic for κ = 10
and various sample sizes. We observe that the power of performance is an increasing function
of sample size n. The DMCEs statistic performs better for larger sample size. Similar results are
observed for the other cases.

Real Example

Background
Here we consider a real data set to show the estimation of the DM circular regression model
using MLE method and the application of the DMCEs statistic using circadian data provided
by Downs and Mardia [11]. The data are obtained from 10 medical students in Austria. The
students are measured several times daily for a period of several weeks. The study period was
split into two prime time periods as part of the study, and the peak time for systolic blood pres-
sure (in degree) was estimated separately for each student for each period, giving values S1 and
S2. The two blood pressure peak times should be equivalent, if circumstances are the same for
each of the two periods.

Fig 1. Power of performance of DMCEs statistic, for n = 70.

doi:10.1371/journal.pone.0153074.g001
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Descriptive Statistics
Several plots can be used to illustrate the distributions of both measurements. In general, from
Figs 3 and 4, both sets of measurement follow the same distribution. It can be seen that the
maximum blood pressures are observed in the upper left quadrant of the circular histogram
indicating the same time in both periods. Some of the descriptive statistics for the circadian

Fig 3. Circular Histogram for S1.

doi:10.1371/journal.pone.0153074.g003

Fig 2. Power of performance of DMCEs statistic, for κ = 10.

doi:10.1371/journal.pone.0153074.g002
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data are given in Table 2. The summary statistics of the S1 and S2 are almost similar including
the concentration parameter with the value more than two.

In addition, Fig 5 shows the spoke plot of the data. By taking the horizontal axis in the right
direction as 0°, the inner ring places the observations of S1 while the outer ring for S2. The
lines connecting points on outer and inner rings correspond to the observed values of S1 and
S2 respectively for the same time point. It can be observed that one line corresponding to stu-
dent number 8 on the left hand side of the plot lies a distance away from the others.

Parameter Estimation
Using the circadian data set, we calculate the precision parameters in the pre-specified sets as
described in Section 2. The resulting plot of ρ versus index is given in Fig 6. The initial values of
each parameter correspond to the highest point observed in the plot giving αo = 18°, βo = 9°
and ωo = 0.70. Thus, using these initial values, the final parameter estimates are obtained by

maximizing the log likelihood function given by Eq (5): â ¼ 16:58�, b̂ ¼ 5:74� and ô ¼ 0:67.

Fig 4. Circular Histogram for S2.

doi:10.1371/journal.pone.0153074.g004

Table 2. Descriptive statistics for circadian data.

Variable S1(u) S2(v)

Mean Direction 307.93° 314.69°

Mean Resultant Length 0.74 0.72

Circular Std Dev 44.87° 46.6°

Median Direction 314.5° 318°

Concentration parameter 2.251 2.125

doi:10.1371/journal.pone.0153074.t002
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Outlier detection
We now apply the outlier detection procedure based on the DMCEs statistic on the data. The
student number 8 is flagged as a candidate of outlier. By employing the DMCEs statistic which
uses the row deletion approach, such outlier is also known as an influential observation.
The data is of size n = 10 with the maximum likelihood estimate of concentration parameter
k̂ ¼ 17:64 giving the cut-off point to be used is 0.07. Upon calculating the DMCEs for the data,
we have DMCEs = 0.09 which is greater than the cut-off point and conclude that student num-
ber 8 is an influential observation.

Further, we investigate the effect of this observation on the parameter estimates. After

removing student number 8 from the data set, we notice that the values of â and b̂ increase by

Fig 5. Spoke plot of circadian data.

doi:10.1371/journal.pone.0153074.g005

Fig 6. Plot of ρ versus index for circadian data.

doi:10.1371/journal.pone.0153074.g006

Procedure for Detecting Outliers in a Circular Regression Model

PLOS ONE | DOI:10.1371/journal.pone.0153074 April 11, 2016 8 / 10



www.manaraa.com

a large value in degree while ô also changes from 0.669 to 0.820 as shown in Table 3. Further
investigation should then be carried out as the identification of this outlier might lead to useful
understanding of the data.

Conclusions
In this paper, we consider the problem of detecting outliers in the Down and Mardia’s circular
regression model based on the DMCEs statistic. The sampling behaviour and the performance
of the procedure are investigated via simulation. We illustrate the use of the new procedure
using the circadian data set. In the future, it is our interest to introduce a more robust approach
in identifying outliers by extending methods used in the linear case to circular.
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